
Exploring Applications of Linear Algebra in Computer

Graphics

Michal Kurek, Hamzeh Hamdan

July 13, 2023

1

COVER LETTER

As we developed our project, we split the research paper into several sections. While Michal re-

searched quaternions and transformations in three-dimensional space, I looked into two-dimensional

transformations and perspective projections. However, we continually checked each other’s sections

and proofs, giving feedback on each other’s mathematics and writing style. Additionally, Michal

created the original graphics we used in our paper.

After receiving feedback from our TF Kevin Lin, we redefined the purpose of our paper. Kevin

pointed out that our paper didn’t have a lot of mathematical content, and some of the mathematical

definitions we used were imprecise. We decided to go back and refine our math, by giving more

precise definitions of the concepts used throughout the paper. We also decided to visually separate

definitions and theorems from other parts of the paper by enclosing them in boxes.

Moreover, following Kevin’s advice, we’ve added multiple theorems and definitions, which were

missing in our project draft. We have also clarified some of the language in sections 3 and 5, as well

as included figures and examples to help the reader build the intuition behind the concepts being

introduced.

Additionally, the feedback we received from our fellow students was very helpful in declaring

what content was already written at a Math 22A student level and what content needed to be

further clarified. This included some of the mathematical concepts and examples we talk about in

our paper.

One of the peer reviewers advised us to clarify some of the inconsistencies in our explanations. For

example, in the draft we did not explain why the order of matrix multiplication in section 2 matters.

We have since added relevant paragraphs explaining and/or correcting those inconsistencies.

Following our second peer reviewer’s advice, we decided to delve more deeply into the topics

which we covered briefly in the project draft: quaternions. We’ve included relevant definitions and

theorems that

We additionally decided to exclude an example we had included in the shadow mapping section

of our draft; in this example, we defined shadow mapping through an equation. We decided not

to delve into the mathematics of shadow mapping, since the section would add a completely new

mathematical field and much complexity beyond the time scope of the paper. Instead, we decided

to give an introduction to the topic, with relevant figures to make the concept of shadow mapping

more approachable and easier to understand.

2

Kurek, Hamdan MATH 22A Fall ’21

Contents

1 Introduction 4

2 Transformations 4

2.1 Transformations in 2D space . 4

2.2 Homogeneous Coordinate Transformations . 8

2.3 Transformations in 3D space . 10

3 Quaternions 12

3.1 Quaternion norm, conjugate, and inverse. Versors. 13

3.2 Representing rotations using quaternions . 16

3.3 Compound rotations . 17

3.4 Benefits over using matrices . 17

4 Perspective Projections 18

4.1 Orthographic and perspective projections. 19

4.2 Constructing a perspective projection matrix. 20

5 Shadow Mapping 24

6 Conclusion 27

7 References 27

3

Kurek, Hamdan MATH 22A Fall ’21

1 Introduction

Computer graphics are fundamental many aspects of technology as we know it. From UX animations

in smartphones to characters in games, every animation in computer graphics relies on a combination

of different transformations. Opening an application on a mobile device, for example, commonly

results with the icon on the home screen expanding to fit the screen; this animation is a combination

of scale and translation, two transformations we will discuss with more detail later.

Beyond the simple transformations of objects in two-dimensional space, computer graphics has

evolved to include simulated virtual and gaming environments. These projections commonly include

many different complex transformations, but for the purposes of this paper, we will focus on three-

dimensional rotations and real time three-dimensional shadow mapping.

In our paper, we will present two-dimensional transformations and build upon them to expand

into transformations in the third dimension. With an additional dimension, transformations tend

to become more complicated and their applications expand. In our paper, we will additionally

expand into quaternions, an easier way of representing three-dimensional rotations, and perspective

projections, the process by which three-dimensional environments are displayed onto a plane.

2 Transformations

Definition 1. A transformation is a bijection of a set to itself, that is, it is an injective function

such that an inverse exists.

In this paper, when we are referring to transformations we are referring primarily to geometric

transformations — transformations, where the domain and range are sets of points, most often

both R2 or both R3.

2.1 Transformations in 2D space

Two-dimensional transformations lie at the core of computer graphics and geometric transformations.

In this section, we will consider translation, rotation, scaling, reflection, and shear transformations.

Let us first consider one of the most basic transformations: a translation. In the context of our

game, a translation involves changing the position of an object in space by moving each of the points

comprising the object in the same direction by the same amount.

Definition 2. A translation is a geometric transformation that moves each point of a figure,

shape or object by some constant vector.

Translations are transformations in which a point A =

[
x

y

]
is moved to another point A′ =

[
x′

y′

]

4

Kurek, Hamdan MATH 22A Fall ’21

by a given vector t⃗ =

[
tx

ty

]
. Thus, x′ = x+ tx and y′ = y + ty, and

[
x′

y′

]
=

[
x

y

]
+

[
tx

ty

]
.

Figure 1: A simple translation in 2D space (simplified)

In our game, the vector t⃗ by which we translate the object’s position could represent for example

the object’s velocity vector, defining the direction and distance to move the object by each frame.

What if we wanted our player character to be able to turn, or rotate, towards a direction the

player specifies?

Definition 2. A rotation is a transformation that maintains the distance between a point and

the origin while changing its location relative to the origin.

When we rotate an object, most of the times we only know the angle of the desired rotation as

well as the point around which we rotate. A question arises: knowing the 2D coordinates of a point,

how would we find the coordinates of that point after performing the rotation?

Theorem 1. The transformation matrix used to perform a counterclockwise rotation by an

angle θ with respect to the x axis is given by the matrix[
cos θ − sin θ

sin θ cos θ

]
.

5

Kurek, Hamdan MATH 22A Fall ’21

Proof. Consider some point A =

[
x

y

]
being rotated about the origin to another point A′ =

[
x′

y′

]
.

We prove the theorem by utilizing polar coordinates.

Let r be the distance of the point A from the origin of the coordinate system. Let ϕ be the angle

between the vector starting in the origin and ending in A and the x axis, and θ be the angle we are

rotating through. Since rotations preserve the distance of points from the origin of rotation, we can

write:

A =

[
r cosϕ

r sinϕ

]
, A′ =

[
r cos(ϕ+ θ)

r sin(ϕ+ θ)

]
Thus,

A′ =

[
r cosϕ cos θ − r sinϕ sin θ

r sinϕ cos θ + r cosϕ sin θ

]
=

[
x cos θ − y sin θ

x sin θ + y cos θ

]
And hence

A′ =

[
cos θ − sin θ

sin θ cos θ

][
x

y

]
.

■

Figure 2: A simple rotation in 2D space

Theorem 2. The transformation matrix used to perform a clockwise rotation by an angle θ

with respect to the x axis is given by the matrix[
cos θ sin θ

− sin θ cos θ

]
.

6

Kurek, Hamdan MATH 22A Fall ’21

Proof. Note, that for a clockwise rotation, θ changes sign, and hence the rotation matrix is[
cos(−θ) − sin(−θ)

sin(−θ) cos(−θ)

]

Using the sine and cosine properties, we get[
cos(−θ) − sin(−θ)

sin(−θ) cos(−θ)

]
=

[
cos θ sin θ

− sin θ cos θ

]
.

■

Scaling is a transformation that stretches or compresses every point coordinate by some factor.

Different factors can be used for different axes. For example, let us denote Sx as the scaling factor for

the x axis, and similarly Sy for the y axis. For a point A =

[
x

y

]
, The following are true: x′ = Sx · x

and y′ = Sy · y. Thus,

A′ =

[
x′

y′

]
=

[
Sx 0

0 Sy

][
x

y

]
.

Figure 3: A simple scaling in 2D space

Scalings are useful in 2D graphics, since if we want to make an object appear closer to the viewer,

we simply make it appear bigger on the screen.

Reflections are special cases of scaling in which either Sx = −1 and Sy = 1 representing a

reflection about the y axis, or Sx = 1 and Sy = −1 representing a reflection about the x axis.

Shear is a transformation that skews an object with respect to the x or y axis. Consider a case

in which we are skewing by the angle α with respect to the x axis and by the angle β with respect

7

Kurek, Hamdan MATH 22A Fall ’21

to the y axis. It follows that x′ = x+ y tanβ and y′ = y + x tanα. This can be represented as:[
x′

y′

]
=

[
1 tanβ

tanα 1

][
x

y

]
.

Figure 4: A simple sheer in 2D space

2.2 Homogeneous Coordinate Transformations

Imagine we want to transform a point by rotating it by some angle and translating by some vector:

1. First, we rotate the point using the rotation matrix (matrix multiplication)

2. We perform the translation using matrix addition (matrix addition)

Now, imagine we want to do the same to an object: we apply the same operations to all of the points

comprising the object.

If we could somehow carry out the entire transformation using solely matrix multiplication, we

could simplify the process of separately rotating and translating all of the points. Fortunately, ho-

mogeneous coordinates come to the rescue. Suppose we have a point (x, y) in the Cartesian

coordinates. We introduce a third coordinate w. We call that coordinate the homogeneous co-

ordinate. Writing our point as (x, y, w), we have now represented our point in the homogeneous

coordinate system.

(x, y, w)
Homogeneous

⇐⇒
(x
w
,
y

w

)
Cartesian

One of the advantages of representing 2D points using this system is that it allows for easier

computation of transformations. Namely, the homogeneous coordinate system allows us to represent

transformations using solely matrix multiplication.

8

Kurek, Hamdan MATH 22A Fall ’21

Let us give some examples. For simplicity’s sake, we take w = 1 (since
(
x
1 ,

y
1

)
= (x, y)) Take

vector translation as an example:

[
x′

y′

]
=

[
x

y

]
+

[
tx

ty

]
−→

x
′

y′

1

 =

1 0 tx

0 1 ty

0 0 1

xy
1

where the vector with coordinates tx, ty represents the initial translation vector. We can use a

similar approach to represent rotation, scaling and sheering. We call the matrices representing those

transformations in our new coordinate system homogeneous. Thus, the homogeneous scaling matrix

is Sx 0 0

0 Sy 0

0 0 1

since x

′

y′

1

 =

Sx · x
Sy · y
1

 =

Sx 0 0

0 Sy 0

0 0 1

xy
1

 ,

the homogeneous rotation matrix cos θ − sin θ 0

sin θ cos θ 0

0 0 1

since x

′

y′

1

 =

r cos(θ + ϕ)

r sin(θ + ϕ)

1

 =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

xy
1

 ,

and the homogeneous sheer matrixx
′

y′

1

 =

 1 tanβ 0

tanα 1 0

0 0 1

xy
1

 .

To simulate ”body motion” in 2D, we can now simply concatenate the matrix multiplication

by first scaling, then rotation and finally translating any given vector in 2D space. Let us give an

example.

Suppose we had the following player sprite represented in 2D space. Moreover, suppose we want

to translate it by some vector, scale it, and rotate it. We can now do so using the homogeneous

coordinate system by simply carrying out the matrix multiplication as so:

9

Kurek, Hamdan MATH 22A Fall ’21

T ′ = Mtranslation ·Mrotation ·Mscaling · T

where Mtranslation,Mrotation,Mscaling represent the respective transformation matrices, and T repre-

sents some initial point T. The order of matrix multiplication matters, since matrix multiplication

is not commutative. Scaling an object which has been moved away from the origin produces a result

different than scaling an object centered at the origin: think of scaling as not simply stretching or

shrinking objects, but moving points away from or towards the origin. Any object not centered at

the origin is going to be moved away from (0, 0) or towards (0, 0). Similarly for rotating objects,

rotating objects not centered at the origin will result in a different final orientation of the object.

Because of this, for rotation and scaling, we want the transformation to be performed with the

object being centered at the origin, and hence we perform the translation last.

2.3 Transformations in 3D space

Taking a similar approach as we did with the homogeneous coordinates in 2D, by introducing a fourth

coordinate we can represent and chain different transformations in 3D. Extending our approach to

3D is quite easy. Consider for example the following homogeneous scaling matrix
Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1

 .

Secondly, the translation matrix by a vector v is
1 0 0 v1

0 1 0 v2

0 0 1 v3

0 0 0 1

since

x′

y′

z′

1

 =

x+ vx

y + vy

z + vz

1

 =

1 0 0 vx

0 1 0 vy

0 0 1 vz

0 0 0 1

x

y

z

1

Rotations in 3D are a bit more tricky than in 2D. Let’s start with an easy one: a rotation around

the z-axis. In the 2D rotation about the origin we have covered, the origin remains in its original

place. In a 3D rotation about an axis, all of the points on that axis will remain fixed. Thus, we can

take the same approach as in a 2D transformation while fixing the z coordinate, which results in the

10

Kurek, Hamdan MATH 22A Fall ’21

matrix

Mz(θ) =

cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1

Similarly, by fixing the x and y axes, we can derive

My(θ) =

cos θ 0 − sin θ 0

0 1 0 0

sin θ 0 cos θ 0

0 0 0 1

and

Mx(θ) =

1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1

If we treat a rotation in 3D space as a composite of rotations about the three axes, we can denote

the rotation transformation as

M(θx, θy, θz) = Mz(θz)My(θy)Mx(θx)

while the rotation matrix can be found by carrying out the matrix multiplication, and is equal to
cos θy cos θz − cos θx sin θz − sin θx sin θy cos θz sin θx sin θz − cos θx sin θy cos θz 0

cos θy sin θz cos θx cos θz − sin θx sin θy sin θz − sin θx cos θz − cos θx sin θy sin θz 0

sin θy sin θx cos θy cos θx cos θy 0

0 0 0 1

The relevant angles for those rotations (θx, θy, θz) are called the Euler angles. In aviation and

aerodynamics for example, we refer to those angles as the yaw, pitch, and roll.

What if we wanted to find an axis of rotation for some rotation R knowing its rotation matrix?

To answer this question, we have to solve

Rx = (1)x

that is, we are looking for an eigenvector corresponding to the eigenvalue of 1 for this particular

rotation matrix. Such a vector is unaffected by the transformation, since it stays fixed on the same

line that it spans and it’s magnitude does not change.

11

Kurek, Hamdan MATH 22A Fall ’21

Consider as an example a simple rotation about the z axis. The rotation matrix is given by

Mz(θ) =

cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1

We solve

Mz(θ)x = (1)x

(Mz(θ)− I)x = 0

or
cos θ − 1 − sin θ 0 0

sin θ cos θ − 1 0 0

0 0 0 0

0 0 0 0

x

y

z

1

 =

0

0

0

0

Row reducing the matrix on the left hand side gives

1 − sin θ
cos θ−1 0 0

sin θ cos θ − 1 0 0

0 0 0 0

0 0 0 0

 −→

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

Hence

1 · x = 0

1 · y = 0

0 · z = 0

We see that any vector with coordinates x = 0, y = 0, and an arbitrary z coordinate is an eigenvector

and lays on the axis of rotation. Thus, the axis of rotation is the z axis, which is what we expected.

3 Quaternions

Representing rotations in R3 using rotation matrices can get quite cumbersome.

As we will see, there exists a different (and in some ways better) way of representing rotations

in 3D space: quaternions.

12

Kurek, Hamdan MATH 22A Fall ’21

Definition 3. A quaternion is a number of the form

a+ bi+ cj + dk

where a, b, c, d ∈ R, while i, j, k are related in such a way that

i2 = j2 = k2 = ijk = −1

and

ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j

We call i, j, k the basic quaternions or the fundamental quaternion units.

We can think of quaternions as an extension of complex numbers; whereas when dealing with

complex numbers we considered the real dimension and the imaginary dimension, when working with

quaternions we will consider 4 dimensions: one real dimension and three imaginary dimensions.

Similarly to how complex numbers can represent rotations in 2D space, quaternions help us

represent rotations in 3D space.

A commonly used notation for quaternions is q = (s, v) where s represents the real part, and v

represents the imaginary vector part of q, that is

s = a

v = bi+ cj + dk = (b, c, d)

3.1 Quaternion norm, conjugate, and inverse. Versors.

Definition 4. The magnitude |q| of a given quaternion q = a + bi + cj + dk is a scalar value

equal to

|q| =
√

a2 + b2 + c2 + d2 =
√
s2 + |v2| =

√
qq

where q is the conjugate of q defined as

q = (s,−v)

Definition 5. A unit quaternion is a quaternion of norm equal to 1, that is

|q| = 1 or a2 + b2 + c2 + d2 = 1

Unit quaternions are also referred to as rotation quaternions or versors.

13

Kurek, Hamdan MATH 22A Fall ’21

Rotation quaternions are commonly represented in their axis-angle representation form, that is,

we can represent a versor q = a+ bi+ cj + dk as

q = cos

(
θ

2

)
+ b sin

(
θ

2

)
i+ c sin

(
θ

2

)
j + d sin

(
θ

2

)
k

or

q = cos

(
θ

2

)
+ v sin

(
θ

2

)
where θ is the angle of rotation around the axis defined by the vector v.

To explain how the quaternion rotation actually works, we need a couple more definitions

Definition 6. The inverse of a quaternion q is defined as

q−1 =
q

|q|2
.

Note, that for unit quaternions, since |q| = 1, we have that the inverse is equal to the conjugate of

that quaternion

q−1 = q

Theorem 3. The result of multiplying two quaternions r = (r0, rv) and s = (s0, sv) is equal to

rs = (r0, rv)(s0, sv) = (r0s0 − rv · sv, r0sv + s0rv + rv × sv)

where rv · sv is the dot product of vectors rv and sv, and rv × sv is the cross product of rv and

sv.

Proof. Let r = (r0, rv) and s = (s0, sv). Carrying out the multiplication and expanding, we get

rs = (r0, rv)(s0, sv) =

= r0s0 + r0sv + s0rv + rvsv

Let us compute rvsv. Let rv = (ui+ vj + wk) and sv = (xi+ yj + zk). We get

rvsv = (ui+ vj + wk)(xi+ yj + zk) =

= uixi+ uiyj + uizk + vjxi+ vjyj + vjzk + wkxi+ wkyj + wkzk =

= −ux+ uyk − uzj − vxk − vy + vzi+ wxj − wyi− wz =

= −ux− vy − wz + vzi− wyi+ wxj − uzj + uyk − vxk

= −(ux+ vy + wz) + (vz − wy)i+ (wx− uz)j + (uy − vx)k

= −rv · sv + rv × sv

14

Kurek, Hamdan MATH 22A Fall ’21

where rv · sv is the dot product of rv and sv, and rv × sv is the cross product of rv and sv. Plugging

this result back into the original equation, we get

rs = r0s0 + r0sv + s0rv − rv · sv + rv × sv =

= r0s0 − rv · sv + r0sv + s0rv + rv × sv

where r0s0 − rv · sv is the real part, and r0sv + s0rv + rv × sv is the imaginary part. Thus, we can

write

rs = (r0, rv)(s0, sv) = (r0s0 − rv · sv, r0sv + s0rv + rv × sv)

■

One important property of rotations is that they don’t change the scaling of the objects. Luckily,

quaternion multiplication has a convenient property: multiplying quaternions preserves their norms.

To prove that claim, first we will prove the following lemma.

Lemma 1. For any two quaternions p and q, we have

q p = pq

Proof. Carrying out the multiplication, we see that indeed

q p = (q0, −qv)(p0, −pv)

= (q0p0 − (−qv · (−pv)), q0(−pv) + p0(−qv) + (−qv)× (−pv))

= (p0q0 − (−pv · (−qv)), p0(−qv) + q0(−pv) + (−pv)× (−qv))

= (p0q0 − pv · qv, −p0qv − q0pv − pv × qv)

= pq

■

Now, we can prove the following theorem

Theorem 4. Quaternion norm is multiplicative. Namely, for any two quaternions p and q we

have:

|p||q| = |pq|

Proof. We use the definition of a quaternion’s norm. Let |p| =
√
pp and |q| =

√
qq. Hence

|p||q| =
√
(pp)(qq)

15

Kurek, Hamdan MATH 22A Fall ’21

Since qq is a scalar, and scalars commute with every quaternion, we can write√
(pp)(qq) =

√
p(qq)p

By Lemma 1, we write √
p(qq)p =

√
pqq p =

√
pqpq

and hence, by the definition of a quaternion’s norm

√
pqpq = |pq|

■

It follows, that when we multiply some given quaternion by a unit quaternion, the norm of the

resulting quaternion is the same as of the original one.

Moreover, the norm of the inverse of a quaternion is the same as the norm of the quaternion

itself.

3.2 Representing rotations using quaternions

To perform a rotation of a point P = (x, y, z) by a quaternion q, we

1. Constructing a quaternion p from the point P , by taking P ’s coordinates as p’s imaginary

components, and we set the quaternion’s real part to be equal to zero (quaternions without

the real part are called pure quaternions and are used to represent vectors in three-dimensional

space):

p = 0 + xi+ yj + zk

2. We perform the rotation by carrying out the quaternion multiplication

p′ = qpq−1

3. Since |q| = |q−1|, we see that |p′| = |p|. The components of the resulting pure quaternion p′

can be used to extract the coordinates of the rotated point P ′:

p′ = 0 + x′i+ y′j + z′k −→ P ′ = (x′, y′, z′)

For a given q = cos
(
θ
2

)
+v sin

(
θ
2

)
, this rotation can be interpreted as a rotation about the axis

v by an angle θ. Since the norm of p′ is equal to the norm of p, it is easy to see that the distance

between point P and the origin has been preserved after the rotation.

16

Kurek, Hamdan MATH 22A Fall ’21

Figure 5: A simple quaternion rotation

3.3 Compound rotations

Quaternions provide us with an easy way of compounding multiple rotations. Take for example two

quaternions q1 and q2 representing two different rotations. Let P be some point in space we are going

to rotate. Using the approach from the previous subsection, we first construct a pure quaternion p,

using the coordinates of P . To perform the two rotations, we then simply calculate

p′ = q2
(
q1pq

−1
1

)
q−1
2

The above can be represented (using quaternion multiplication) as

p′ = q3pq
−1
3 where q3 = q2q1

3.4 Benefits over using matrices

Compared to rotation matrices, quaternions can be more efficient and easier to work with. Since

quaternions are 4-tuples, they provide us with a more concise way of representing a rotation than a

3x3 matrix does.

Furthermore, the angle of rotation and rotation axis can be trivially recovered, since for a versor

q we have

q = a+ bi+ cj + dk = cos

(
θ

2

)
+ v sin

(
θ

2

)
and thus

θ = 2arccos (a)

and the axis of rotation

v =

(
b

sin
(
θ
2

) , c

sin
(
θ
2

) , d

sin
(
θ
2

))

17

Kurek, Hamdan MATH 22A Fall ’21

which is equivalent to the unit vector(
b

sin
(
θ
2

)) i+

(
c

sin
(
θ
2

)) j +

(
d

sin
(
θ
2

)) k

Another benefit of using quaternions over matrices is compound rotations. For example, to carry

out a composition of two rotations using rotation matrices, we have to work out the product of

the two corresponding matrices, which would require 27 multiplies and 18 additions (Wiki article).

Using quaternions however, we only have to work out 16 multiplies and 12 additions to achieve the

same rotation chain. This has big implications for computer graphics, since it allows us to save time

on performing calculations and results in major performance gains.

One area where quaternions excel is interpolation. To animate a rotating object inside of 3D

space, we need to know its initial orientation, final orientation, as well as all of the intermediate

orientations; we can think of those as intermediate steps, or frames of an animation (see Figure 6).

Figure 6: Intermediate steps of an interpolation (adapted from Rotation Splines)

Using algorithms like Slerp (shorthand for spherical linear interpolation), which utilize quaternion

algebra behind the scenes, we can calculate those intermediate orientations. This is especially useful

for animating movements like rotations, as well as inverse kinematics systems.

4 Perspective Projections

Consider now a three-dimensional environment, maybe a battle field in a game or a simulation of

a bedroom. How can we render a three-dimensional environment through a the perspective of a

certain point? The process of doing so is called perspective projection, and it requires a projection

matrix.

Before we define what a projection matrix is, we must first introduce certain concepts and

standard practices in computer graphics.

Definition 7. The camera space is a three-dimensional space with the coordinate system from

the camera’s point of view, that is, the camera is located at the origin, usually looking down

along the -Z axis.a

aAUTODESK: Camera Space, Object Space, and World Space

18

https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Performance_comparisons
https://splines.readthedocs.io/en/latest/rotation/slerp.html
https://knowledge.autodesk.com/search-result/caas/CloudHelp/cloudhelp/2017/ENU/FlameAssist/files/GUID-795AB1E7-A1E6-4420-B039-E3F3F606110A-htm.html

Kurek, Hamdan MATH 22A Fall ’21

Definition 8. Normalized device coordinate (NDC) Space is a screen independent dis-

play coordinate system that encompasses a cube where the x, y, and z components range from

-1 to 1.a

aScience Direct: Device Coordinate

Essentially, the camera space is the space in which the camera exists, and the NDC space is the

space that defines the view volume.

Definition 9. Consider a three dimensional point P represented as a row vector using ho-

mogeneous coordinate in camera space. A projection matrix is a 4x4 matrix Mproj such

that

P ·Mproj = P ′,

where P ′ is the projected version of P onto the canvas in NDC space.

Projection transformations are used to project vertices of three dimensional objects onto the

screen in order to create images of these objects that follow the rules of perspective. Thus, we use

projection matrices to transform vertices or three dimensional points, not vectors. Additionally,

these points must be represented using homogeneous coordinates; recall that a projection matrix is

a 4x4 matrix, and thus any point to which the projection transformation is applied to must be a

[1x4] vector.

4.1 Orthographic and perspective projections.

There are two types of projections: orthographic projections and perspective projections. The

differences among these projections relies on a new concept: the viewing frustum.

Definition 10. The viewing frustum is the region of space in the modeled world that may

appear on the screen. It is a truncated pyramid that extends from the camera, where the apex is

the camera position, the lines extending from the camera are all of equal length, and the sides

of the pyramid are noted as image planes. a

aEssentials of Interactive Computer Graphics: Concepts and Implementation (Page 14)

Definition 11. The angle of view is the vertical angle that subtends the height of the near

(image) plane from the camera position. a

aEssentials of Interactive Computer Graphics: Concepts and Implementation (Page 14)

Perspective projections are projections of an object onto a canvas plane in the viewing frustum

that is parallel to the far (image) plane. As the canvas plane moves towards or away from the

camera, the objects size changes.

19

https://www.sciencedirect.com/topics/computer-science/device-coordinate
https://books.google.com/books?id=PqT3RRVo4isC&pg=PA390##v=onepage&q&f=false
https://books.google.com/books?id=PqT3RRVo4isC&pg=PA390##v=onepage&q&f=false

Kurek, Hamdan MATH 22A Fall ’21

Now consider the case in which the angle of view approaches zero. The four lines defining the

frustum’s pyramid will become parallel to each other and the frustum pyramid becomes a rectangular

prism. Thus, an object size in the image stays constant since the canvas dimensions remain the same

regardless of its distance to the camera. This type of projection is called an orthographic projection.

4.2 Constructing a perspective projection matrix.

Consider a three dimensional point A in a viewing frustum, with Range(x) ∈ [l, r], Range(y) ∈ [b, t],

and Range(x) ∈ [−n,−f]. In order words, the truncated frustum’s nearest plane to the origin is

defined by the following points: (l, t,−n), (r, t,−n), (r, b,−n), and (l, b,−n), listed from clockwise

from the top left corner. Our projection matrix P is an nxn matrix that transforms the truncated

frustum into an NDC with Range(x), Range(y), Range(z) ∈ [−1, 1].

Note that a camera space uses a right-handed coordinate system while NDC uses a left-handed

coordinate system; while the camera at the origin looks along the -Z axis in the camera space, it

looks along the +Z axis in NDC. Thus, we must negate the near and far planes when we create the

matrix.

The three dimensional point A has coordinates (x, y, z) (and will be represented through the

homogeneous coordinate system as (x, y, z, w) from now on) in the camera space. Let A′ = AP such

that A′ is the projection of A onto the projection plane (the near plane of the viewing frustum,

denoted as n). The coordinates of A′ thus are (x′, y′,−n,w′). Note that A and A′ both exist along

the same vector extending from the origin and both exist in the viewing frustum. Thus, there exists

some scalar a such that:
x′

w′ = a
x

w
,
y′

w′ = a
y

w
, and

−n

w′ = a
z

w
.

In other words,

a
w′

w
=

x′

x
=

y′

y
=

−n

z
.

Using these ratios, we can calculate x′ and y′ as the following:

x′ =
−nx

z
=

nx

−z
and y′ =

−ny

z
=

ny

−z
.

Note that x′ and y′ are written in homogeneous form. Thus, we now know that after A is

multiplied by P , the resulting coordinates are still homogeneous coordinates, with w = −z. We can

transform these coordinates into their respective NDC coordinates by dividing by the x, y, and z

coordinates by the w coordinate.

20

Kurek, Hamdan MATH 22A Fall ’21

Thus, we get the following equation:
x′

y′

z′

w′

 = P

x

y

z

w

 ,

xndc

yndc

zndc

 =

x
′/w′

y′/w′

z′/w′

We can now set the w-component of A′ as −z, giving us the following:
x′

y′

z′

w′

 =

. . . .

. . . .

. . . .

0 0 −1 0

x

y

z

w

 , ∴ w′ = −z.

Next, we map x′ to xndc and y′ to yndc with linear relationship [l, r] =⇒ [−1, 1] and [b, t] =⇒
[−1, 1]. We will first consider the mapping from x′ to xndc and then y′ to yndc.

Consider the mapping of x′ to xndc, in which we have a vertical axis xndc and a horizontal axis

x′. Recall that x′ ∈ [l, r] and xndc ∈ [−1, 1]. The mapping looks like this:

Figure 7: Adapted from OpenGL Projection Matrix.

We can calculate the mapping from (l,−1) to (r, 1) as the following:

xndc =
1− (−1)

r − l
· x′ +B.

Substituting (r, 1) into (x′, xndc), we get the following two equations:

21

http://www.songho.ca/opengl/gl_projectionmatrix.html

Kurek, Hamdan MATH 22A Fall ’21

1 =
2r

r − l
+B

B = 1− 2r

r − l
=

r − l − 2r

r − l
=

r + l

r − l

∴ xndc =
2x′

r − l
− r + l

r − l
.

Let us now consider the mapping of y′ to yndc, in which we have a vertical axis yndc and a

horizontal axis y′. Recall that y′ ∈ [b, t] and yndc ∈ [−1, 1]. The mapping looks like this:

Figure 8: Adapted from OpenGL Projection Matrix.

We can calculate the mapping from (b,−1) to (t, 1) as the following:

yndc =
1− (−1)

t− b
· y′ +B.

Substituting (t, 1) into (y′, yndc), we get the following two equations:

1 =
2t

t− b
+B

B = 1− 2t

t− b
=

t− b− 2t

t− b
=

t+ b

t− b

∴ yndc =
2y′

t− b
− t+ b

t− b
.

Recall that we’ve already calculated the values of x′ and y′ as the following:

x′ =
−nx

z
=

nx

−z
and y′ =

−ny

z
=

ny

−z
.

Plugging these values into the equations we’ve just derived, we get the following equation for xndc:

22

http://www.songho.ca/opengl/gl_projectionmatrix.html

Kurek, Hamdan MATH 22A Fall ’21

xndc =
2x′

r − l
− r + l

r − l
=

2 · nx
−z

r − l
− r + l

r − l
=

2nx

(r − l)(−z)
− r + l

r − l

=
2n
r−lx

−z
+

r+l
r−lz

−z
=

2n
r−l · x+ r+l

r−l · z
−z

.

Plugging these values into the equations we’ve just derived, we get the following equation for yndc:

yndc =
2y′

t− b
− t+ b

t− b
=

2 · ny
−z

t− b
− t+ b

t− b
=

2ny

(t− b)(−z)
− t+ b

t− b

=
2n
t−by

−z
+

t+b
t−bz

−z
=

2n
t−b · x+ t+b

t−b · z
−z

.

Note: Recall that these values are homogeneous coordinates. Thus, when entering these values in P ,

we must not include the division by −z.

Our equation for A′ and the projection P can thus be updated as the following:
x′

y′

z′

w′

 =

2n
r−l 0 r+l

r−l 0

0 2n
t−b

t+b
t−b 0

. . . .

0 0 −1 0

x

y

z

w

 , ∴ w′ = −z.

The calculation of the final row z in our matrix is a little different. We know that z is the

projection plane’s location and does not depend on the x or y coordinates. Thus, we use the

w-component to find the relationship between zndc and z.

We rewrite zndc = z′/w′ = (Az + Bw)/ − z. Recall that w is the w-coordinate of the camera

space, and thus w = 1. Thus, we rewrite zndc = (Az+B)/−z. We know that the following (z, zndc)

coordinates exist: (−n,−1) and (−f, 1). Plugging these in, we get the following:
−An+B

n
= −1

−Af +B

f
= 1

We rewrite the equations as B = An− n and −Af +B = f . Plugging the first into the second,

we get the following:

−Af + (An− n) = f

A = −f + n

f − n
.

23

Kurek, Hamdan MATH 22A Fall ’21

Plugging this value of A back into B, we get the following:

(
f + n

f − n
)n+B = −n

B = − 2fn

f − n
.

Plugging these values back into the original equation zndc = (Az+B)/− z, we get the following

relation:

zndc =
− f+n

f−nz −
2fn
f−n

−z
.

Thus, our projection matrix is calculated as the following:
2n
r−l 0 r+l

r−l 0

0 2n
t−b

t+b
t−b 0

0 0 −(f+n)
f−n

−2fn
f−n

0 0 −1 0

 .

5 Shadow Mapping

A shadow is a dark area where light from a light source is occluded by some object. In computer

graphics, shadows are a great way of adding depth and realism to a scene.

One of the easier ways of implementing shadows is shadow mapping. The idea behind shadow

mapping is pretty simple: shadows exist in areas that aren’t reached by light, thus we can map

shadows to a scene by rendering the scene from the light’s point of view. Every point (or pixel)

visible from the light source is going to be considered lit, while every point not visible from the light

source (i.e. occluded by some object) is going to be considered to be in shadow (Figure 9).

24

Kurek, Hamdan MATH 22A Fall ’21

Figure 9: Adapted from LearnOpenGL

Consider the following scene

Figure 10: Adapted from GPU Shader Tutorial

The first step to shadow mapping involves generating a shadow map. A shadow map is a

texture storing the depth, or the distance from the light source to a pixel, for each pixel seen from

the light’s point of view. The depth values (distances) get ”clamped” to the range [0, 1], where the

pixels closest to the light source (where the distance is the smallest) are represented as the darkest,

25

https://learnopengl.com/Advanced-Lighting/Shadows/Shadow-Mapping
https://shader-tutorial.dev/advanced/shadow-mapping/

Kurek, Hamdan MATH 22A Fall ’21

and the pixels furthest away as the brightest.

Figure 11: A simple shadow map (adapted from GPU Shader Tutorial)

Looking at the scene from the camera’s point of view, we now check each pixel against the

generated depth map: if the distance of the pixel is greater than the value stored in the shadow

map, the pixel is in shadow. Otherwise, the pixel is illuminated. Consider for example point P in

the following figure. Since P ’s distance to light is greater than the depth value stored in the shadow

map, we know that P is in a shadow.

Figure 12: Adapted from GPU Shader Tutorial

26

https://shader-tutorial.dev/advanced/shadow-mapping/
https://shader-tutorial.dev/advanced/shadow-mapping/

Kurek, Hamdan MATH 22A Fall ’21

6 Conclusion

Transformations are essential to computer graphics. The ability to define a mathematical function

that can be applied to an object to create the desirable effect is central to computer animations.

However, this is not limited to linear algebra. In fact, as we saw with quaternions, there are some

transformations that are much more efficiently computed without the use of linear algebra. On

the other hand, some transformations, like perspective projections, are fundamentally dependent

on linear algebra. This is because some transformations are, by nature, more directly linear than

others.

The unique applicability of fields of mathematics is why we study them in the first place. We

enter a field of mathematics with a new way of thinking, marvelling at the beauties it reveals about

our world. This is one reason we decided to expand into quaternions; we wanted to show the

importance of diversifying mathematical knowledge in research.

In the future, our paper can be expanded upon to include a more detailed analysis of different

shadow mapping techniques, exploring ray tracing, percentage closer filtering, perspective shadow

maps, cascaded shadow maps, and variance shadow maps. Additionally, another paper might ap-

ply three dimensional rotations using linear algebra, and better demonstrate the true benefit of

quaternions.

7 References

References

[1] Lay, David C. Linear Algebra and Its Applications / David C. Lay. Addison-Wesley,

1997.

[2] Vector Math for 3D Computer Graphics, Bradley Kjell

[3] 3D Projection Wikipedia, Wikimedia Foundation, 27 June 2021

[4] Vince, John. Quaternions for Computer Graphics. Springer London, 2011.

[5] “Quaternion.” Wikipedia, Wikimedia Foundation, 3 Nov. 2021,

https://en.wikipedia.org/wiki/Quaternion.

[6] Lončarić, Nataša & Kraljić, Marko. (2018). Matrices in computer graphics. Tehnički

glasnik. 12. 120-123. 10.31803/tg-20180119143651.

[7] “Shadow Mapping.” Wikipedia, Wikimedia Foundation, 7 Nov. 2021,

https://en.wikipedia.org/wiki/Shadow mapping.

27

Kurek, Hamdan MATH 22A Fall ’21

[8] Eberly, David. “A Linear Algebraic Approach to Quaternions.” September 16, 2002,

https://www.geometrictools.com/Documentation/LinearAlgebraicQuaternions.pdf

[9] “Quaternions and Spatial Rotation.” Wikipedia, Wikimedia Foundation, 22 Nov.

2021, https://en.wikipedia.org/wiki/Quaternions and spatial rotation.

[10] Joel L. Weiner and George R. Wilkens, ”Quaternions and Rotations in E4.”, The

American Mathematical Monthly, Vol. 112, No. 1 (Jan., 2005), pp. 69-76

[11] Viro Oleg, ”Lecture 5. Quaternions,”

http://www.math.stonybrook.edu/ oleg/courses/mat150-spr16/lecture-5.pdf

[12] “Spherical Linear Interpolation (SLERP)§.” Spherical Linear Inter-

polation (Slerp) - Splines, Version 0.1.0-43-g0faf87f, 22 Nov. 2021,

https://splines.readthedocs.io/en/latest/rotation/slerp.html.

[13] “Shader Advanced - Shadow Mapping.” GPU Shader Tutorial, https://shader-

tutorial.dev/advanced/shadow-mapping/.

[14] “Shadow Mapping.” LearnOpenGL, https://learnopengl.com/Advanced-

Lighting/Shadows/Shadow-Mapping.

[15] “Among Us Video Game SVG.” Freesvgplanet, 16 Feb. 2021,

https://freesvgplanet.com/among-us-svg-free-layered-among-us-svg-video-game-

svg-instant-download-silhouette-cameo-shirt-design-among-svg-png-dxf-0984/.

[16] “8.3 - Perspective Projections.” LearnWebGL,

http://learnwebgl.brown37.net/08 projections/projections perspective.html.

[17] Ahn, Song Ho. OpenGL Transformation,

http://www.songho.ca/opengl/gl transform.htmlprojection.

[18] Alamia, Marco. “Article - World, View and Projection Transformation Ma-

trices.” Coding Labs: World, View and Projection Transformation Matrices,

http://www.codinglabs.net/article world view projection matrix.aspx.

[19] Dobrushkin, Vladimir. “Computer Graphics.” Fluids at Brown,

https://www.cfm.brown.edu/people/dobrush/cs52/Mathematica/Part7/graphics.html.

[20] Scratchapixel. “The Perspective and Orthographic Projection Matrix.”

Scratchapixel, 15 Aug. 2014, https://www.scratchapixel.com/lessons/3d-basic-

rendering/perspective-and-orthographic-projection-matrix/projection-matrix-

introduction.

28

	Introduction
	Transformations
	Transformations in 2D space
	Homogeneous Coordinate Transformations
	Transformations in 3D space

	Quaternions
	Quaternion norm, conjugate, and inverse. Versors.
	Representing rotations using quaternions
	Compound rotations
	Benefits over using matrices

	Perspective Projections
	Orthographic and perspective projections.
	Constructing a perspective projection matrix.

	Shadow Mapping
	Conclusion
	References

